Domination of generalized Cartesian products

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Domination of generalized Cartesian products

The generalized prism πG of G is the graph consisting of two copies of G, with edges between the copies determined by a permutation π acting on the vertices of G. We define a generalized Cartesian product G π H that corresponds to the Cartesian product G H when π is the identity, and the generalized prism when H is the graph K2. Burger, Mynhardt and Weakley [On the domination number of prisms o...

متن کامل

Total domination of Cartesian products of graphs

Let γt(G) and γpr(G) denote the total domination and the paired domination numbers of graph G, respectively, and let G ¤ H denote the Cartesian product of graphs G and H. In this paper, we show that γt(G)γt(H) ≤ 5γt(G ¤ H), which improves the known result γt(G)γt(H) ≤ 6γt(G ¤ H) given by Henning and Rall.

متن کامل

Domination Number of Cartesian Products of Graphs

Recall these definitions (from [2]): Definition (p. 116). In a graph G, a set S ⊆ V (G) is a dominating set if every vertex not in S has a neighbor in S. The domination number γ (G) is the minimum size of a dominating set in G. Definition (p. 193). The cartesian product of G and H, written G H, is the graph with vertex set V (G) × V (H) specified by putting (u, v) adjacent to (u′, v′) if and on...

متن کامل

Packing and Domination Invariants on Cartesian Products and Direct Products

The dual notions of domination and packing in finite simple graphs were first extensively explored by Meir and Moon in [15]. Most of the lower bounds for the domination number of a nontrivial Cartesian product involve the 2-packing, or closed neighborhood packing, number of the factors. In addition, the domination number of any graph is at least as large as its 2-packing number, and the invaria...

متن کامل

Generalized Shifts on Cartesian Products

It is proved that if E, F are infinite dimensional strictly convex Banach spaces totally incomparable in a restricted sense, then the Cartesian product E × F with the sum or sup norm does not admit a forward shift. As a corollary it is deduced that there are no backward or forward shifts on the Cartesian product `p1 × `p2 , 1 < p1 6= p2 < ∞, with the supremum norm thus settling a problem left o...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Discrete Mathematics

سال: 2010

ISSN: 0012-365X

DOI: 10.1016/j.disc.2009.12.007