Domination of generalized Cartesian products
نویسندگان
چکیده
منابع مشابه
Domination of generalized Cartesian products
The generalized prism πG of G is the graph consisting of two copies of G, with edges between the copies determined by a permutation π acting on the vertices of G. We define a generalized Cartesian product G π H that corresponds to the Cartesian product G H when π is the identity, and the generalized prism when H is the graph K2. Burger, Mynhardt and Weakley [On the domination number of prisms o...
متن کاملTotal domination of Cartesian products of graphs
Let γt(G) and γpr(G) denote the total domination and the paired domination numbers of graph G, respectively, and let G ¤ H denote the Cartesian product of graphs G and H. In this paper, we show that γt(G)γt(H) ≤ 5γt(G ¤ H), which improves the known result γt(G)γt(H) ≤ 6γt(G ¤ H) given by Henning and Rall.
متن کاملDomination Number of Cartesian Products of Graphs
Recall these definitions (from [2]): Definition (p. 116). In a graph G, a set S ⊆ V (G) is a dominating set if every vertex not in S has a neighbor in S. The domination number γ (G) is the minimum size of a dominating set in G. Definition (p. 193). The cartesian product of G and H, written G H, is the graph with vertex set V (G) × V (H) specified by putting (u, v) adjacent to (u′, v′) if and on...
متن کاملPacking and Domination Invariants on Cartesian Products and Direct Products
The dual notions of domination and packing in finite simple graphs were first extensively explored by Meir and Moon in [15]. Most of the lower bounds for the domination number of a nontrivial Cartesian product involve the 2-packing, or closed neighborhood packing, number of the factors. In addition, the domination number of any graph is at least as large as its 2-packing number, and the invaria...
متن کاملGeneralized Shifts on Cartesian Products
It is proved that if E, F are infinite dimensional strictly convex Banach spaces totally incomparable in a restricted sense, then the Cartesian product E × F with the sum or sup norm does not admit a forward shift. As a corollary it is deduced that there are no backward or forward shifts on the Cartesian product `p1 × `p2 , 1 < p1 6= p2 < ∞, with the supremum norm thus settling a problem left o...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Discrete Mathematics
سال: 2010
ISSN: 0012-365X
DOI: 10.1016/j.disc.2009.12.007